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A B S T R A C T

The use of statistical and machine learning approaches to predict the compressive strength of concrete based on
mixture proportions, on account of its industrial importance, has received significant attention. However, pre-
vious studies have been limited to small, laboratory-produced data sets. This study presents the first analysis of a
large data set (> 10,000 observations) of measured compressive strengths from actual (job-site) mixtures and
their corresponding actual mixture proportions. Predictive models are applied to examine relationships between
the mixture design variables and strength, and to thereby develop an estimate of the (28-day) strength. These
models are also applied to a laboratory-based data set of strength measurements published by Yeh et al. (1998)
and the performance of the models across both data sets is compared. Furthermore, to illustrate the value of such
models beyond simply strength prediction, they are used to design optimal concrete mixtures that minimize cost
and embodied CO2 impact while satisfying imposed target strengths.

1. Introduction

A concrete's compressive strength after 28 days of aging is the most
commonly used metric of its engineering properties and performance
and forms a critical input in structural design [1,2]. Indeed, structural
concrete is most often specified on the basis of its compressive strength
after 28 days of aging, and the compressive strength is known to be
proportional to other mechanical properties such as the flexural and
tensile strength [1]. Furthermore, it is well-known that concrete
strength is chiefly influenced by w/c (water-to-cement ratio, mass
basis). But, even for a given w/c, substantial variations in concrete
strength may be observed based on the characteristics of constituent
materials; e.g., cement type, the type of aggregate used, the paste
content, mineral and chemical admixtures, etc. [1,2]. Therefore, a

robust, predictive model that could estimate compressive strength as a
function of the mixture proportions would be useful in enabling high-
throughput mixture design, and reducing the empirical, labor intensive
nature of “trial batching” approaches that are the basis of industrial
practice today.

Physical models that are capable of strength prediction (i.e., without
empirical calibration) are difficult to construct, due to: (i) our inability
to rigorously model cement hydration, and microstructure develop-
ment, (ii) the unavailability of constituent material properties – for
example, while the mechanical properties of the constituent materials,
and cement hydrates are better known, chemical data especially as
needed to model reaction kinetics is much less available [3–5], (iii)
nonlinear elastic behavior of the cement paste which evolves with time
[6–9], and (iv) the unpredictable effects of mineral and chemical
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admixture interactions, such as water-reducing admixtures (WRAs) or
air-entraining admixtures (AEAs), on cement hydration and strength
development. Therefore, there is great interest in applying statistical
and machine learning (ML) methods (e.g. multiple linear regression,
artificial neural networks) to model compressive strength evolution as a
function of the concrete's mixture proportions.

However, the vast majority of prior studies based on statistical or
ML approaches have been limited to smaller data sets consisting of
around 1000 compressive strength measurements or less [10–19].
Furthermore, these data sets typically encompass laboratory specimens
produced under controlled conditions. As such, it is unclear as to how
well these predictive models may perform when applied to data col-
lected from industrial concrete production (“ready mix”) operations.
This is because production data is likely to contain more unexplainable
variance whose effects on the accuracy of strength prediction models
remains unknown. Therefore, the present study aims to evaluate the
performance of predictive models for estimating a concrete's compres-
sive strength using a large data set of job-site based concrete strength
measurements.

2. Background

2.1. Machine learning/data mining algorithms

Machine learning and data mining algorithms that have been de-
veloped over the past few decades provide a means of developing
predictive models from empirical data, without a need for detailed
knowledge of the underlying physical mechanisms [20,21]. Therefore,
such models may be well-suited for predicting a concrete's compressive
strength – a material property that can be influenced by compositional,
processing and testing variables. This section provides a brief overview
of the modeling techniques used in this study while further details re-
garding their formulation, and implementation can be found elsewhere
[21].

2.1.1. Artificial neural networks (ANNs)
Artificial neural networks (ANNs) are statistical models that seek to

determine input-output relationships via a series of connected data
structures or “neurons” [21,22]. The neurons are organized into layers,
with each neuron being functionally related to all neurons in the pre-
vious layer. Fig. 1 shows a schematic of a typical neural network model
with p= 4 input variables, a hidden layer with k= 3 hidden neurons,
and a single output.

Mathematically, the relationship between each hidden neuron and
the input variables can be expressed as [21],

=h w x( )i
T

i (1)

where, x= [x1,…,xp]T is the vector of p input variables, wi = [wi, 1,
…,wi, p]T are the “weights” corresponding to each input variable, and σ
is a nonlinear “activation function.” For regression problems, a sig-
moidal function is most commonly used as the activation function, i.e.,
[21],
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Similarly, the predicted output Y is related to the hidden neurons h
according to [21],

=Y g h( )T (3)

where, h= [h1,…,hk]T is the vector of hidden neuron values and
β= [β1,…,βk]T is another set of weight factors. Here again, g can be a
nonlinear function, however, it is typically taken as the identity matrix
such that =Y hT .

Neural networks are “trained” by identifying the appropriate values
of the weight factors w and β which minimize a measure of prediction
error for a given training data set. Often, the root-mean-squared error

(RMSE) provides an adequate measure of error, and can be expressed
as,
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where, Yi is the observed or measured output corresponding to ob-
servation i, Yi is the predicted output, and N is the number of ob-
servations or data points in the training set. Common numerical
methods such as the Levenberg–Marquardt algorithm [22], can be used
to identify the appropriate weight factors. The large number of fitting
parameters in neural network models (i.e., the weight factors w and β)
allows them to easily identify nonlinear interactions between input
variables, resulting in a powerful predictive tool. But, if used indis-
criminately, neural networks that have a large number of hidden layers
and/or hidden neurons in each layer are prone to over-fitting data,
leading to generalization errors [20,21]. Therefore, the size of a neural
network should be chosen carefully based on cross-validation, as de-
scribed below.

2.1.2. Decision trees
Decision trees are a family of machine learning methods that can be

used for both data classification and regression problems [20,21,23]. In
contrast to neural networks, decision trees are “rule-based” models, i.e.,
they aim to identify logical splits in the data rather than fit a set of
parameters in a mathematical formula. In other words, the tree splits
the input space into a series of partitions or “leaf nodes,” and then uses
a simple model (i.e., often simply a constant value) to predict the output
in each partition [21]. The splits are selected to minimize some metric
of error, typically the sum-of-squared errors between predicted and
observed outputs (Eq. (4)). A popular method of determining the splits
is the classification and regression tree (CART) algorithm [23]. Clearly,
the size of a tree must be limited in some way to prevent the tree from
becoming too large and over-fitting the data; this is typically done by
limiting the number of splits, or by ensuring that each leaf node con-
tains a minimum number of data points [21,23].

The performance of decision tree regression models can be im-
proved by building ensembles, or large collections of individual deci-
sion trees, and aggregating their predictions. Such ensemble methods
can both increase prediction accuracy and reduce over-fitting and
generalization errors [21]. One popular ensemble model is the so-called
random forest model, which trains a large number of trees individually
using only a random subset of the input variables [20,21]. In addition,
each tree does not use the entire set of training data, but rather a
bootstrap sample of the training data [21]. This procedure is known as
bootstrap aggregation or “bagging.” The predictions of each individual
tree are then averaged to obtain the prediction of the random forest
ensemble. Gradient boosting [21] is another established tree ensemble
method. In this case, an initial tree is trained using the entire set of
input data and all input variables. Then, a second tree is trained to fit
the residuals of the first tree (i.e., the differences between the predicted
and observed values) to the input data. This procedure is repeated for a
specified number of iterations (typically several hundred). Then, the
predictions of each tree are added to obtain the predictions of the
gradient-boosted ensemble [20,21]. In order to avoid over-fitting, the
contribution of each tree beyond the first to the sum is reduced by a
factor known as the learning rate, which typically varies between 0.01
and 0.1 [20] and can be tuned by cross-validation.

2.1.3. Support vector machines (SVMs)
Support vector machines (SVMs) are a family of regression models

that are effective for nonlinear problems [20,21,24,25]. Rather than
using the sum-of-squared errors (Eq. (4)) as an objective function when
fitting the model, SVMs use another measure of error known as hinge
loss or ε-insensitive loss. In this case, errors smaller than a set threshold
ε do not contribute to the overall error measure. The hinge loss function
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can then be expressed as,
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SVMs seek to fit a model of the form,

=
=
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where, the parameters ci are referred to as choice coefficients, and the
Gaussian kernel function k(x,xi) is defined as,

=k ex x( , ) .i
x xi 2 (7)

This kernel function measures the similarity, quantified as a
Gaussian distance, between the set of inputs x and those of the ith point
in the training set xi. Note that because such a quantity is used, the
input data should be centered and scaled (i.e. subtracted from its mean
and divided by its standard deviation) such that each variable is ren-
dered unitless. Furthermore, Eq. (6) indicates that there are as many
parameters (the N choice coefficients) in the model as points in the
training set. To make the problem mathematically feasible, a regular-
ization term (i.e., a penalty term for large choice coefficients) must be
added to the objective function. The objective function can then be
expressed as,
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= = = =

J L Y c k c c kx x x x( , ) ( , ).
i

N

i
j

N

j i j
i

N

j

N

i j i j
1 1 1 1 (8)

The regularization factor λ determines how much the large choice
coefficients are penalized and should be tuned appropriately via cross-
validation [21].

2.2. Previous studies on concrete strength prediction using statistical
methods

Numerous authors have applied statistical and machine learning
techniques to predict the compressive strength of concrete based on its
mixture proportions [10–19]. Notably, Yeh et al. [10] published a

dataset consisting of 1031 measured compressive strengths as a func-
tion of w/c, cement, fly ash and blast furnace slag contents, coarse and
fine aggregate contents, superplasticizer dosage, and age, and used
artificial neural networks (ANNs) to develop a strength prediction
model. The authors found that their ANN model offered a coefficient of
determination (R2) as high as 0.92 when comparing measured versus
predicted strengths on their test data. Several other studies
[11,12,18,26] have used the same dataset published by Yeh et al. [10]
to evaluate the performance of other machine learning models in pre-
dicting compressive strength. These studies too have reported similar
results, with various models including neural networks [11,12],
boosted and bagged regression trees [11], and SVMs [12] resulting in
R2 > 0.9. In addition, other studies [13–17,19] have used different,
smaller data sets to develop predictive models for compressive strength,
primarily using neural networks [13–17,19]. Because most studies on
compressive strength prediction have used the same data set, or very
small data sets secured under carefully-controlled laboratory condi-
tions, it is unclear how well these predictive models can estimate the
strengths of industrially produced ready-mix concrete (RMC). This is
significant as in industrial operations, variables such as the ambient
temperature, type of mixing (central mixing, or truck mixing) or the
moisture content of aggregates may be controlled imprecisely or not at
all [27–29]. Therefore, one would expect the performance of predictive
models to suffer from the extra noise introduced into the data by these
unobserved and/or uncontrolled variables.

The present study aims to quantify the extent of such noise on model
performance, and identify if such uncontrolled parameters may induce
unexplainable variance in compressive strength predictions of in-
dustrially-produced concretes.

3. Analysis

3.1. Data collection

Two data sets were considered in this study. The first was the dataset
published by Yeh et al. [10] consisting of 1031 measured compressive
strengths, as previously discussed. Because this data set has been used by

Fig. 1. A schematic of a typical feed-forward artificial neural network (ANN) with a single hidden layer.
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several previous studies, it provided a useful benchmark by which to
gauge model performance. Furthermore, as the present study is not fo-
cused on the effect of age on concrete strength (N.B.: the 28 days strength
is most often captured during industrial production), only data for
samples with ages greater than or equal to 28 days were considered. In
total, 706 of the 1031 measurements were used from the data set of Yeh
et al. while a subset of the data was neglected on account of having
strengths measured before this 28-days reference age [10].

The second data set was provided by an international vertically-
integrated cement/concrete producer (VIP) from across a range of dif-
ferent concrete production sites and consisted of 9994 measured com-
pressive strengths from job-site mixtures that were sampled across
various locations in the United States. Three samples corresponding to a
given mixture was collected at the job-site (i.e., in the form of 6″ × 12″
cylinders) and cured following ASTM C39 for 28 days after which time
their compressive strengths were measured. The data set contained
mixture proportions in terms of: w/c, cement and fly ash contents (in kg
per m3 of concrete), water-reducing admixture (WRA) and air-en-
training admixture contents (in kg per 100 kg of cementitious material),
coarse and fine aggregate contents (in kg per m3 of concrete), and fresh
air content (in volume %) for each mixture. The mixture proportions
reported reflect the actual mixture proportions, i.e., based on the batch
weights. Furthermore, all mixtures in the industrial dataset used ASTM
C150 compliant Type I/II OPC. In general, Class F fly ash compliant
with ASTM C618 was used in all relevant cases. Finally, the aggregates
used were compliant with ASTM C33.

Prior to model training and evaluation, the VIP data set was subject
to a preprocessing step in which measurements that appeared to be
corrupted by obvious recording/procedural errors were eliminated.
However, measurements were not removed solely on the grounds of
being classified as outliers, as doing so would provide an overly opti-
mistic view of performance. Indeed, robustness to such outliers is an
important quality of a useful predictive model, and care must be taken
to ensure that training and validation data are not manipulated ex-
cessively prior to analysis.

To illustrate the variables in the data set, Fig. 2 plots the concrete's
compressive strength (fc, MPa) as a function of the eight input variables
in the VIP data set. As expected, there is an inverse relationship

between w/c and compressive strength, however, the range of mea-
sured compressive strengths for a given w/c is still very large. Fur-
thermore, it is difficult to recognize the effect of each input variable on
the compressive strength with seemingly no trends being visually evi-
dent in the case of several (supposedly influential) input variables in-
cluding: the fly ash content, fine aggregate content, etc.

3.2. Data splitting

In order to obtain estimates of the generalization error for the
predictive models developed in this study, each data set was partitioned
into training and test sets. The data was partitioned at random, with
around 80% of all data points used for training data and the remaining
20% used for validation. For the Yeh et al. data set, 564 data points
were used as training points while the remaining 142 were used as
validation points. For the VIP dataset, the training set consisted of 7995
measurements and the validation data set consisted of 1999 measure-
ments. In each case, the training data set was used to develop and tune
the strength prediction models, while the validation data was used only
for final assessments of model performance.

3.3. Model tuning and cross-validation

Compressive strength prediction models were implemented following
four distinct modeling approaches: neural network, gradient-boosted tree,
random forest, and SVM. As discussed previously, each of these models
involves a number of extra parameters that must be appropriately tuned
to optimize performance. To accomplish this, a 5-fold cross-validation

Fig. 2. The relationship between the eight input (i.e., mixture proportion) variables and the concrete's compressive strength in the VIP's data set.

Table 1
The parameters obtained following cross-validation for each compressive
strength prediction model.

Model Parameters

Neural network 2 hidden layers with 10 and 5 neurons each
Random forest 500 trees in ensemble, 3 input variables used for each

tree
Gradient-boosted tree 500 trees in ensemble, learning rate = 0.09
SVM ε = 2 MPa, λ= 13.5
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procedure was used [20,21] which consisted of the following steps:

1) To randomly partition the training set into 5 “folds”,
2) To train the model using data from 4 of the 5 folds and use the 5th to

estimate the error,
3) To repeat this procedure such that each of the 5 folds is used once to

estimate the error,
4) To average the estimated errors from each of the 5 folds to obtain

the cross-validation error.

This procedure provides an estimate of the generalization error
within the same training sample. It can then be used to optimize the
model parameters by finding the values of the parameters that mini-
mize the cross-validation error. Table 1 summarizes the parameters
used by each model as tuned by cross-validation.

3.4. Concrete mixture optimization

The ability to estimate compressive strengths based on the mixture
proportions would allow a concrete producer to design and proportion
“optimal” mixtures that minimize monetary cost and/or embodied CO2

impact, while still meeting a designer's strength requirements. Here,
this is demonstrated by first identifying mixtures of minimal cost for a
given range of strengths (i.e., a two-objective optimization problem)
and then identifying mixtures that minimize cost and embodied CO2

impact while still adhering to specified target strengths (three-objective
optimization). Because there are multiple objectives in each optimiza-
tion scenario, there is no single optimal solution but rather a series of
optimal (“Pareto”) solutions that emerge. Both optimization procedures
were conducted using the artificial neural network (ANN) model
trained on the VIP dataset. This model is better suited for use in a
gradient-based optimization procedure because it is “smooth” with re-
spect to the input parameters, as opposed to the tree-based models
which may contain non-differentiable points. The optimization was
carried out using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm [30] within MATLAB's optimization toolbox. In an effort to
identify global rather than local optima, a pattern search method was
used to generate a large number of initial points. The optimization was
performed for each of these points, and the best resulting solution was
considered as the global optimum.

Because concrete mixtures with a higher cementitious content have
higher compressive strengths, and because cementitious materials are
more expensive than aggregates, there is a trade-off between the ex-
pected compressive strength and monetary cost of a mixture. The es-
timated monetary costs of each mixture component on a mass basis are
listed in Table 2. The cost of mixing water was assumed to be negligible.
The cost of fly ash can vary depending on location [31]; but to set a
range, fly ash is proposed to cost between one-half to on par with ce-
ment (i.e., ordinary portland cement, OPC) as noted below.

The objective function is the total cost of the concrete mixture per m3

of material, which can be expressed as,

= + + + +C p C p C p C p C pTotal cost ($/m ) c c fla fla fa fa ca ca WRA WRA
3 (9)

where, Ci and pi are the dosage (in kg/m3) and cost (in $/kg) of mixture
component i, respectively. The optimization problem is defined by a

series of constraints, the first of which is that the compressive strength of
the mixture must not be less than some target strength fc,target, such that:

f fx( )c pred c target, , (10)

where, fc,pred(x) is the compressive strength predicted by the neural
network model as a function of the mixture parameters x. Next, it is
necessary that the sum of the volume fractions of each mixture compo-
nent add up to one,
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where, ρi is the density of each component (in kg/m3). Furthermore,
upper and lower bounds were placed on some of the mixture parameters,
as shown in Table 4. These bounds were based on the range of values
observed in the training fraction of the VIP data set; extrapolation be-
yond them would likely lead to poor model performance and less certain
results.

The dosage of WRA was not treated as a free parameter – instead, it
was assumed to be directly proportional to the cementitious material
content at a mass ratio of 0.0031 kg WRA per kg of cement [35]. Fi-
nally, in order to fully define the problem, the air content and AEA
dosage (if present) are required as inputs to the strength prediction
model. These parameters were assumed to be constant and to corre-
spond to either air-entrained mixtures with an air content of 6 vol% and
an AEA dosage of 0.03 mass % (by mass of cement), or to non-air-
entrained mixes with an air content of 2 vol%; wherein no AEA is
added. These values were based on the average values in the VIP da-
taset for air-entrained and non-air entrained concrete mixtures.

4. Results and discussion

4.1. Compressive strength prediction

Table 4 summarizes the performance of each model when applied to
the test set data from each of the two data sets. Three error metrics are
reported, namely (i) root-mean-square error (RMSE, in MPa), (ii) R2-
value (i.e., the strength of the linear relationship between predicted and
observed values), and (iii) mean absolute percentage error (MAPE). For
comparison, the performance of a simple linear regression model of the
form,

= +Y xT
0 (12)

is also reported. First, Table 4 establishes that the R2-value of the pre-
dictive models was higher when applied to the data set published by
Yeh et al. [10]. In other words, the models were able to explain more of
the variance in compressive strength for this data set, as compared to
the job-site data from the VIP. However, the RMSE was also larger,
indicating that the absolute compressive strength was predicted less
accurately on average than for the VIP data set. Taken together, these
results show that, unsurprisingly, the VIP data set features more un-
explainable variance, than the data set of Yeh et al. Furthermore, while
the more advanced models clearly out-performed the linear regression
model for the Yeh et al. data set, this difference was far less substantial
for the VIP data set; perhaps due to the increased noise (variance).

Overall, the contrast in model performance between data sets shows
that while statistical/ML models are very effective in predicting com-
pressive strength of laboratory-curated mixtures based on their mixture
proportions, they are less effective in predicting the strength of concrete
produced in an industrial setting. To improve predictive performance in
the latter case, it may be necessary to expand the range of mixture
(input) variables considered including: mixing temperature, mixing
type (central, or truck mixing), relative humidity, aggregate source and
type, moisture content, curing temperature profiles, potential job-site
retempering of the concrete (if any), uncertainty in batch weights,
changes in cement, or fly ash behavior upon silo restocking, etc. Despite

Table 2
The estimated bulk density and cost of each concrete mixture component.

Mixture component Subscript Density (kg/m3) Cost ($/kg) Ref.

Cement C 3150 0.110 [32]
Water W 1000 0.000
Fly ash fla 2500 0.055 [33]
Coarse aggregate ca 2500 0.010 [32]
Fine aggregate fa 2650 0.006 [32]
WRA WRA 1350 2.940 [34]
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(a) (b)

(c) (d)

RMSE: 4.5 MPa RMSE: 4.8 MPa 

RMSE: 4.4 MPa RMSE: 4.5 MPa 

Fig. 3. The distribution of test set residuals from the VIP dataset as a function of predicted strengths for: (a) neural network, (b) SVM, (c) boosted tree, and (d)
random forest models.

Fig. 4. The cumulative distribution of percentage error for: (a) neural network, (b) SVM, (c) boosted tree, and (d) random forest models.
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these shortcomings, each model was still able to predict compressive
strength with an average relative error of < 10% – a very favorable
outcome – even when applied to the industrial VIP data set. Further,
while the performance of each machine learning method was similar,
the random forest model exhibited the lowest RMSE and highest R2-
value for both data sets. However, such small differences in perfor-
mance between models suggest that each is equally well-suited for
predicting the compressive strength of industrial concrete, and there-
fore, selection between them can be made based on their ease of im-
plementation when used for a procedure such as the mixture optimi-
zation examples that are demonstrated in the following section.

For clarity, Fig. 3 plots the test (validation data) set residuals from
the VIP dataset (i.e., the difference between the measured and predicted
strengths) as a function of predicted strengths for each of the four
statistical models considered, namely: (a) neural network, (b) SVM, (c)
boosted tree, and (d) random forest. First, Fig. 3 shows that there is no
significant correlation between the predicted strengths and the re-
siduals. Additionally, the distribution of residuals is similar across each
of the four models. These observations are important because they
suggest that the errors in each model's predictions are due to un-
explainable variance in the data, rather than due to the models failing
to recognize important interactions between the input variables and
compressive strength. Finally, as an additional test of model perfor-
mance, Fig. 4 plots the cumulative error distributions (i.e., showing the
percentage of test set points that are predicted within a given error
threshold) for each of the four models, along with the empirical prob-
ability density of the percentage errors. Indeed, each model was able to
predict the strength within 10% relative error for over 60% of the test
points, and within 20% error for over 80% of the test points. Once
again, the performance of each model was similar, further reinforcing

the conclusion that each was able to identify the underlying patterns
represented in the training dataset.

4.2. Mixture optimization

4.2.1. Cost-strength optimization
Fig. 5 plots the minimum achievable mixture cost as a function of its

target strength (i.e., the “Pareto front”) for both: (a) air-entrained and
(b) non-air entrained mixtures, computed via the previously described
optimization procedure. Also shown are the predicted strengths and
costs of the mixtures from the VIP data set. In general, concrete mix-
tures were considered to be air-entrained if they had an air content >
4 vol% and non-air entrained otherwise [36]. It should be noted that
only mixtures that conformed to the imposed optimization constraints
(shown in Table 3) within ± 5% are shown. In general, Fig. 5 estab-
lishes that all the job-site mixtures lie above the Pareto front, i.e., each
mixture has a higher estimated cost than necessary to achieve its target
strength. It should be noted, however, that some of the mixtures offered
within the VIP dataset may have been subject to additional constraints
depending on project specifications that were not considered in our
optimization procedure.

Furthermore, Table 5 shows the resulting “optimal” mixture para-
meters for various target strengths for both air-entrained and non-air-
entrained mixes. As expected, the cementitious material content and
thus the minimum achievable cost of each mixture increased with in-
creasing target strength. Furthermore, the costs of air-entrained mixes
were higher, as higher air contents decrease the compressive strength
and thus must be compensated for by adding more cementitious ma-
terial. Interestingly, most of the optimized mixtures contained the
maximum allowable amount of fly ash, i.e., fly ash comprised 30% of
the total cementitious material. This suggests that the reduction in
strength arising from cement replacement by fly ash is more than
compensated for by 28 days by the reduced cost of the fly ash as

Fig. 5. The Pareto front showing the minimum possible (mixture) cost as a function of its target strength for: (a) air-entrained and (b) non-air entrained concrete
mixtures. Also shown are the estimated strengths and costs of mixtures from the VIP data set. These mixture optimizations were carried out using the ANN model.

Table 3
The upper and lower bound constraints placed on the mixture parameters.

Mix parameter Expression Lower
bound

Upper bound

Cementitious material content Cc + Cfla 300 kg/m3 500 kg/m3

w/c Cw/(Cc + Cfla) 0.20 0.60
Fly ash content Cfla 0 kg/m3 150 kg/m3

Coarse aggregate content Cca 500 kg/m3 1100 kg/m3

Fine aggregate content Cfa 600 kg/m3 1200 kg/m3

Fly ash/total cementitious
material ratio

Cfla/(Cc + Cfla) 0.00 0.30

Total volume fraction of
aggregates

+
Cfa

fa
Cca

ca

0.60 0.75

Coarse/fine aggregate ratio Cfa
Cca

0.50 1.00

Table 4
A comparison of model performance in predicting the compressive strength for
each of the two data sets (Yeh et al. [10] and the VIP data set).

Model Yeh et al. dataset VIP data set

RMSE
(MPa)

R2 MAPE (%) RMSE
(MPa)

R2 MAPE (%)

Linear regression 8.8 0.66 22 5.0 0.49 10
Neural network 6.3 0.82 14 4.8 0.54 9
Random forest 5.7 0.86 14 4.4 0.60 9
Boosted tree 5.8 0.85 13 4.5 0.59 9
SVM 6.4 0.83 15 4.5 0.59 9
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compared to that of cement (N.B.: fly ash is assumed to cost 55% of
cement in this example). However, this nature of compensation is un-
likely as the cost of fly ash increases, and the cost of fly ash and cement
achieve parity. This is even more complicated by the fact that often,
constraints on fly ash contents in industrial concretes are imposed due
to reduced rates of strength gain at early ages which results in reduced
constructability; a project specific constraint that cannot be generically
factored into approaches such as those demonstrated herein, i.e.,
without introducing a penalty factor that assesses the financial impact
of reduced strength gain rates.

Because the cost of fly ash might vary between regions, and from
season to season, it is important to ascertain a “critical” fly ash cost
beyond which the inclusion of fly ash (whether Class C or Class F) in a
concrete mixture is no longer an optimal choice – for cost minimization.
To investigate these aspects, mixture optimization was performed
across a range of possible fly ash costs. As such, Fig. 6 plots the optimal
ratio of fly ash to total cementitious material as a function of the fly ash
cost expressed as a percent of cement cost, for air-entrained concrete.
Interestingly, for target strengths of 45 and 50 MPa, fly ash was still
present in the optimal mixture even when it was 90% as expensive as

cement. However, for a target strength of 55 MPa, fly ash was no longer
included even when it was 75% as expensive as cement. This suggests
that the inclusion of fly ash is a particularly effective cement dilution
approach in conventional concrete mixtures, i.e., those which feature a
compressive strength < 50 MPa.

4.2.2. Strength-cost-embodied CO2 optimization
Another criterion that is expected to attain increasing prominence

for concrete mixtures is their embodied CO2 impact that is primarily
attributed to its cement (OPC) content. In general, industrial by-
products (IBPs) such as fly ash are not attributed any embodied CO2

impact. The production of one metric ton of cement releases approxi-
mately 900 kg of CO2 [37]. Therefore, the expected embodied CO2

impact of a concrete mixture (i.e., in kg of CO2 emitted per m3 of
concrete produced) can be expressed as,

=CO 0.9Cembodied2, c (13)

where, Cc is the cement content of the concrete formulation. Thus, the
primary means of reducing embodied CO2 for conventional concrete
mixture is to substitute cement by fly ash (or another supplementary
cementitious material, SCM, which in general have a lower embodied
CO2 impact than OPC). As shown in the previous section, substituting
cement by fly ash can reduce the cost of the formulation. However, it is
possible that in some cases, fly ash may be more expensive than cement.
In this situation, there is a trade-off between minimizing cost and
minimizing embodied CO2. In such cases, the mixture optimization
procedure can be modified to account for such complexities by in-
troducing an additional constraint given by,

0.9C COc 2,max (14)

where CO2,max is the maximum embodied CO2 (in kg/m3). In this case,
optimal mixtures are those that not only fulfill the imposed target
strength but also the imposed maximum embodied CO2 constraint.

Fig. 7 shows the Pareto front cost of optimal concrete mixtures as a
function of both the target strength and maximum embodied CO2 im-
pact. As bounding cases, in Fig. 7(a), the price of fly ash was taken as
one-half that of cement, whereas in Fig. 7(b) it was taken as 1.5 times
that of cement. In Fig. 7(a), the curves overlap because both cost and
embodied CO2 can be simultaneously minimized by replacing as much
cement as possible, by fly ash. This is because increasing the allowable
embodied CO2, and allowing for increased cement content, does
nothing to reduce mixture cost. In contrast, Fig. 7(b) shows that in-
creasing the embodied CO2 impact – and thus requiring less fly ash –
leads to a lower cost. Furthermore, there were some cases when the
target strength and embodied CO2 impact could not be achieved. For
example, it was not possible to identify a mixture which featured a
strength of 45 MPa but had an embodied CO2 impact of < 250 kg of

Table 5
The optimized mixture parameters for concretes that achieve a series of target strengths, for both air-entrained and non-air entrained concrete formulations.

Target strength
(MPa)

Min Cost
($/m3)

Optimal mixture parameters Constraint values

w/c Fly ash
(kg/m3)

Coarse aggregate
(kg/m3)

Fine aggregate
(kg/m3)

Total cementitious
material (kg/m3)

Total agg.
vol.%

Fly ash/cementitious
ratio

Fine/coarse
aggregate ratio

Air-entrained
30 46.1 0.51 90 955 955 300 0.74 0.30 1.00
35 46.3 0.6 90 1095 759 300 0.72 0.30 0.69
40 53.6 0.6 58.3 1100 639 352 0.67 0.17 0.58
45 60.1 0.24 129 1100 837 429 0.75 0.30 0.76
50 62.7 0.25 138 1100 776 458 0.72 0.30 0.71

Non-air entrained
30 45.6 0.60 90 946 899 300 0.72 0.30 0.95
35 45.7 0.57 90 933 933 300 0.73 0.30 1.00
40 46.2 0.49 90 963 963 300 0.75 0.30 1.00
45 53.8 0.33 112 978 952 373 0.75 0.30 0.97
50 55.7 0.29 117 965 965 392 0.75 0.30 1.00

Fig. 6. The optimal fly ash content expressed as a fraction of the total ce-
mentitious content as a function of the price of fly ash scaled by the price of
cement. Cement is assumed to cost $ 0.110 per kg in this example. These
mixture optimizations were carried out using the ANN model.
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CO2 per m3 of concrete produced. This nature of analyses offers the
means to rapidly screen, and eliminate unfeasible mixtures, and thereby
constrain and restrict (validatory) trial batching activities only to those
mixture formulations which are expected to feature the lowest cost, and
embodied CO2 impact.

5. Summary and outlook

This study has examined the use of statistical and machine learning
methods to predict the compressive strength of concrete as a function of
its mixture proportions, so as to consequently improve the practice of
concrete mixture design, quality control, and quality assurance. A large
dataset with over 10,000 measured compressive strengths was obtained
from a vertically integrated cement/concrete producer (VIP) across a
range of concrete production sites and used to train the predictive
models. While the models have been shown to be very effective in
predicting compressive strength of laboratory-produced concrete sam-
ples, they were less accurate when applied to the job-site data, possibly
due to additional noise introduced by uncontrolled or unreported pro-
cess variables, and variance within the formulation, proportioning,
mixture and casting, and testing process. However, despite this, the
models could still predict compressive strength with an average relative
error of < 10%.

It should be noted however that the VIP data which spans a sub-
stantial time-period of production includes diversity in: ambient
weather conditions, the batches (and hence behavior) of cement and fly
ash used, mixing action (truck or central-plant mixing) and aggregate
composition and grading as may be expected for large volume pro-
duction operations. This is only further complicated by differences in
how water corrections are carried out and aggregate moisture content is
measured which may be handled differently across different concrete
production sites. These styles of differences may explain why the
modeling approaches used herein are less effective at estimating job-
site based concrete compressive strengths as compared to laboratory
sourced data. This suggests a need to: (a) expand the size of the data
sets used for training and testing the models, as doing so simultaneously
improves the ability of models to distinguish meaningful patterns in the
data from noise and allows for more refined hyperparameter tuning
through cross-validation, and (b) incorporate a wider range of input
variables for their influences on affecting concrete strength.

Finally, a mixture optimization procedure was demonstrated using
an ANN based strength prediction model to identify mixtures that
minimized the cost for a given target strength, while imposing limits on
the estimated embodied CO2 footprint of the mixture. These approaches
offer a means to rapidly screen promising formulations for more

intensive trial batching based evaluations – while reducing the labor
and time intensity of concrete batching/trial operations. The outcomes
of this paper are significant since they demonstrate a mathematical
basis to estimate the strength of concrete – without a need for cement
hydration, or microstructure models. Rather, the paper highlights that
access to carefully curated large volumes of data, wherein the input
variables are well-known (i.e., without needing to be carefully con-
trolled) is a powerful means to apply big data analytics to rationalize,
improve and accelerate concrete production operations: from the per-
spective of performance, quality control, and robustness – while redu-
cing material (over)use, and wastage, and limiting overdesign. Each of
these aspects are valuable to enable the design of cost-efficient and
environmentally-friendly concrete mixtures for the construction of
buildings and infrastructure which are often substantially overdesigned
on account of poor predictability of in-place engineering performance.
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